Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.656
Filtrar
1.
J Orthop Surg Res ; 19(1): 260, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659042

RESUMEN

Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.


Asunto(s)
Neoplasias Óseas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ligasas , MicroARNs , Osteosarcoma , Proteínas del Grupo Polycomb , ARN Circular , Regulación hacia Arriba , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , ARN Circular/genética , MicroARNs/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Animales , Progresión de la Enfermedad , Línea Celular Tumoral , Femenino , Activación Transcripcional/genética , Pronóstico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Nat Genet ; 56(4): 675-685, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509385

RESUMEN

Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.


Asunto(s)
Elementos de Facilitación Genéticos , Mamíferos , Animales , Ratones , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética , Mamíferos/genética , Cromatina/genética
3.
Cell Signal ; 116: 111045, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38211843

RESUMEN

TIMELESS (TIM) is a circadian gene which is implicated in the regulation of daily rhythm, DNA replication and repair, and cancer initiation and progression. Nevertheless, the role of TIM in endometrial cancer (EC) development is largely unknown. Bioinformatics analysis showed that TIM was aberrantly up-regulated in EC tissues and positively correlated with clinical or histological grade of EC. Functional studies showed that TIM knockdown reduced EC cell viability and restrained EC cell migration in vitro, as well as blocked xenograft tumor growth in vivo. Mechanistically, HMGB1 transcriptionally up-regulated TIM expression in EC cells. In addition, TIM could activate the transcription of the canonical Wnt ligand WNT8B, and TIM depletion could reduce the malignant potential of EC cells largely by targeting and down-regulating WNT8B. As a conclusion, HMGB1/TIM/WNT8B signal cascade was identified in this study for the first time. HMGB1 exerted its oncogenic role by activating the transcription of TIM, leading to the activation of Wnt signaling and EC progression.


Asunto(s)
Neoplasias Endometriales , Proteína HMGB1 , Humanos , Femenino , Proteína HMGB1/genética , beta Catenina , Activación Transcripcional/genética , Vía de Señalización Wnt , Neoplasias Endometriales/genética , Proteínas Wnt
4.
Proc Natl Acad Sci U S A ; 121(6): e2312861121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285939

RESUMEN

The N6-methyladenosine (m6A) modification of RNA is an emerging epigenetic regulatory mechanism that has been shown to participate in various pathophysiological processes. However, its involvement in modulating neuropathic pain is still poorly understood. In this study, we elucidate a functional role of the m6A demethylase alkylation repair homolog 5 (ALKBH5) in modulating trigeminal-mediated neuropathic pain. Peripheral nerve injury selectively upregulated the expression level of ALKBH5 in the injured trigeminal ganglion (TG) of rats. Blocking this upregulation in injured TGs alleviated trigeminal neuropathic pain, while mimicking the upregulation of ALKBH5 in intact TG neurons sufficiently induced pain-related behaviors. Mechanistically, histone deacetylase 11 downregulation induced by nerve injury increases histone H3 lysine 27 acetylation (H3K27ac), facilitating the binding of the transcription factor forkhead box protein D3 (FOXD3) to the Alkbh5 promoter and promoting Alkbh5 transcription. The increased ALKBH5 erases m6A sites in Htr3a messenger RNA (mRNA), resulting in an inability of YT521-B homology domain 2 (YTHDF2) to bind to Htr3a mRNA, thus causing an increase in 5-HT3A protein expression and 5-HT3 channel currents. Conversely, blocking the increased expression of ALKBH5 in the injured TG destabilizes nerve injury-induced 5-HT3A upregulation and reverses mechanical allodynia, and the effect can be blocked by 5-HT3A knockdown. Together, FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain through m6A-dependent stabilization of Htr3a mRNA in TG neurons. This mechanistic understanding may advance the discovery of new therapeutic targets for neuropathic pain management.


Asunto(s)
Neuralgia , Neuralgia del Trigémino , Animales , Ratas , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Receptores de Serotonina 5-HT3/genética
5.
Mol Metab ; 79: 101848, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042369

RESUMEN

OBJECTIVE: All forms of diabetes result from insufficient functional ß-cell mass. Thus, achieving the therapeutic goal of expanding ß-cell mass requires a better mechanistic understanding of how ß-cells proliferate. Glucose is a natural ß-cell mitogen that mediates its effects in part through the glucose-responsive transcription factor, carbohydrate response element binding protein (ChREBP) and the anabolic transcription factor, MYC. However, mechanistic details by which glucose activates Myc at the transcriptional level are poorly understood. METHODS: Here, siRNA was used to test the role of ChREBP in the glucose response of MYC, ChIP and ChIPseq to identify potential regulatory binding sites, chromatin conformation capture to identify DNA/DNA interactions, and an adenovirus was constructed to expresses x-dCas9 and an sgRNA that specifically disrupts the recruitment of ChREBP to a specific targeted ChoRE. RESULTS: We found that ChREBP is essential for glucose-mediated transcriptional induction of Myc, and for increases in Myc mRNA and protein abundance. Further, ChIPseq revealed that the carbohydrate response element (ChoRE) nearest to the Myc transcriptional start site (TSS) is immediately upstream of the gene encoding the lncRNA, Pvt1, 60,000 bp downstream of the Myc gene. Chromatin Conformation Capture (3C) confirmed a glucose-dependent interaction between these two sites. Transduction with an adenovirus expressing x-dCas9 and an sgRNA specifically targeting the highly conserved Pvt1 ChoRE, attenuates ChREBP recruitment, decreases Myc-Pvt1 DNA/DNA interaction, and decreases expression of the Pvt1 and Myc genes in response to glucose. Importantly, isolated and dispersed rat islet cells transduced with the ChoRE-disrupting adenovirus also display specific decreases in ChREBP-dependent, glucose-mediated expression of Pvt1 and Myc, as well as decreased glucose-stimulated ß-cell proliferation. CONCLUSIONS: The mitogenic glucose response of Myc is mediated via glucose-dependent recruitment of ChREBP to the promoter of the Pvt1 gene and subsequent DNA looping with the Myc promoter.


Asunto(s)
Genes myc , Glucosa , Animales , Ratas , Cromatina/genética , ADN , Glucosa/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Proteínas Proto-Oncogénicas c-myc
6.
ACS Synth Biol ; 13(1): 328-336, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085703

RESUMEN

Synthetic perturbation of gene expression is central to our ability to reliably uncover genotype-phenotype relationships in microbes. Here, we present a novel transcription activation strategy that uses the Vibrio cholerae CRISPR-Associated Transposon (CAST) system to selectively insert promoter elements upstream of genes of interest. Through this strategy, we show robust activation of both recombinant and endogenous genes across the Escherichia coli chromosome. We then demonstrate the precise tuning of expression levels by exchanging the promoter elements being inserted. Finally, we demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant phenotypes in E. coli.


Asunto(s)
Escherichia coli , Vibrio cholerae , Activación Transcripcional/genética , Escherichia coli/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Vibrio cholerae/genética , Regiones Promotoras Genéticas/genética , Sistemas CRISPR-Cas/genética , Elementos Transponibles de ADN/genética
7.
ACS Synth Biol ; 13(1): 230-241, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38073086

RESUMEN

RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.


Asunto(s)
Aptámeros de Nucleótidos , Animales , Cricetinae , Activación Transcripcional/genética , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Cricetulus , ARN/genética , Transgenes/genética , Tetraciclina/farmacología , Antibacterianos , ARN Mensajero/metabolismo
8.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37657935

RESUMEN

Wnt/ß-catenin signaling plays a crucial role in cancer development, primarily activated by ß-catenin forming a transcription complex with LEF/TCF in the nucleus and initiating the transcription of Wnt target genes. Here, we report that LEF1, a member of the LEF/TCF family, can form intrinsically disordered region (IDR)-dependent condensates with ß-catenin both in vivo and in vitro, which is required for ß-catenin-dependent transcription. Notably, LEF1 with disrupted IDR lost its promoting activity on tumor proliferation and metastasis, which can be restored by substituting with FUS IDR. Our findings provide new insight into the essential role of liquid-liquid phase separation in Wnt/ß-catenin signaling and present a potential new target for cancer therapy.


Asunto(s)
Núcleo Celular , beta Catenina , beta Catenina/genética , Activación Transcripcional/genética , Vía de Señalización Wnt/genética
9.
Plant Physiol Biochem ; 202: 107971, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37619269

RESUMEN

Field pea (Pisum sativum L, 2n = 14) is a popular temperate legume with high economic value. Heat shock factors (HSFs) are the core element in the regulatory mechanism of heat stress responses. HSFs in pea (P. sativum) have not been characterized and their role remains unclear in different abiotic stresses. To address this knowledge gap, the current study aimed to characterize the HSF gene family in pea. We identified 38 PsHsf members in P. sativum, which are distributed on the seven chromosomes, and based on phylogenetic analysis, we classified them into three representative classes i.e. A, B, and C. Conserved motif and gene structure analysis confirmed a high degree of similarity among the members of the same class. Additionally, identified cis-acting regulatory elements (CAREs) related to abiotic responses, development, growth, and hormone signaling provides crucial insights into the regulatory mechanisms of PsHsfs. Our research revealed instances of gene duplication in PsHsf gene family, suggesting that this mechanism could be driving the expansion of the PsHsf gene family. Moreover, Expression analysis of PsHsfs exhibited upregulation under heat stress (HS), salt stress (SS), and drought stress (DS) showing their phenomenal role in stress conditions. PsHsfs protein interaction network suggested their involvement in stress-responsive mechanisms. Further transactivation potential was checked for spliced variant of PsHsfA2a (PsHsfA2aI, PsHsfA2aII, and PsHsfA2aIII), PsHsfA3, PsHsfA6b, PsHsfA9, PsHsfB1a, and PsHsfB2a. Overall, these findings provide valuable insight into the evolutionary relationship of PsHsf gene family and their role in abiotic stress responses.


Asunto(s)
Evolución Biológica , /genética , Filogenia , Factores de Transcripción del Choque Térmico/genética , Activación Transcripcional/genética
10.
New Phytol ; 240(2): 577-596, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37583092

RESUMEN

Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.


Asunto(s)
Perfilación de la Expresión Génica , Zea mays , Zea mays/genética , Zea mays/metabolismo , Activación Transcripcional/genética , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Exp Cell Res ; 431(1): 113733, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517591

RESUMEN

IRF1 is a tumor suppressor gene in colon cancer. This study aimed to explore the potential regulation of IRF1 on the ferroptosis of colon cancer and the mechanisms underlying its regulation of GPX4 transcription. IRF1 interacting transcription factors regulating GPX4 transcription were predicted and validated. The role of the IRF1/SPI1-GPX4 axis on the ferroptosis of colon cancer cells was explored. Results showed that IRF1 overexpression reduced GPX4 transcription, increased reactive oxygen species (ROS) and lipid ROS accumulation, and enhanced erastin-induced colon cancer cell growth in vitro and in vivo. SPI1 could directly bind to the GPX4 promoter (-414 to -409) and activate its transcription. IRF1 could bind to SPI1 and suppress its transcriptional activating effects on GPX4 expression. SPI1 overexpression reduced ROS and lipid ROS accumulation and increased colon cancer cell viability and colony formation upon erastin induction. These trends were reversed by IRF1 overexpression. In conclusion, this study revealed a novel oncogenic mechanism of SPI1 by reducing erastin-induced ferroptosis in colon cancer. IRF1 interacts with SPI1 and suppresses its transcriptional activating effect on GPX4 expression. Through this mechanism, IRF1 can enhance erastin-induced ferroptosis of colon cancer. The IRF1/SPI1-GPX4 axis might play a crucial role in modulating ferroptosis in colon cancer and might serve as a potential therapeutic target in the future.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Humanos , Ferroptosis/genética , Especies Reactivas de Oxígeno , Activación Transcripcional/genética , Neoplasias del Colon/genética , Proliferación Celular/genética , Lípidos , Factor 1 Regulador del Interferón/genética
12.
Adv Sci (Weinh) ; 10(25): e2300063, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382191

RESUMEN

Type 1 diabetes (T1D) is a complex autoimmune disease that develops in genetically susceptible individuals. Most T1D-associated single nucleotide polymorphisms (SNPs) are located in non-coding regions of the human genome. Interestingly, SNPs in long non-coding RNAs (lncRNAs) may result in the disruption of their secondary structure, affecting their function, and in turn, the expression of potentially pathogenic pathways. In the present work, the function of a virus-induced T1D-associated lncRNA named ARGI (Antiviral Response Gene Inducer) is characterized. Upon a viral insult, ARGI is upregulated in the nuclei of pancreatic ß cells and binds to CTCF to interact with the promoter and enhancer regions of IFNß and interferon-stimulated genes, promoting their transcriptional activation in an allele-specific manner. The presence of the T1D risk allele in ARGI induces a change in its secondary structure. Interestingly, the T1D risk genotype induces hyperactivation of type I IFN response in pancreatic ß cells, an expression signature that is present in the pancreas of T1D patients. These data shed light on the molecular mechanisms by which T1D-related SNPs in lncRNAs influence pathogenesis at the pancreatic ß cell level and opens the door for the development of therapeutic strategies based on lncRNA modulation to delay or avoid pancreatic ß cell inflammation in T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Activación Transcripcional/genética , Inflamación/metabolismo
13.
J Transl Med ; 21(1): 321, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173692

RESUMEN

BACKGROUND: The ubiquitin protein ligase E3C (UBE3C) has been reported to play an oncogenic role in breast cancer (BRCA). This work further investigates the effect of UBE3C on the radioresistance of BRCA cells. METHODS: Molecules linking to radioresistance in BRCA were identified by analyzing two GEO datasets, GSE31863 and GSE101920. UBE3C overexpression or knockdown was induced in parental or radioresistant BRCA cells, followed by irradiation treatment. The malignant properties of cells in vitro, and the growth and metastatic activity of cells in nude mice, were analyzed. Downstream target proteins, as well as upstream transcriptional regulators of UBE3C, were predicted by bioinformatics tools. Molecular interactions were confirmed by immunoprecipitation and immunofluorescence assays. Furthermore, artificial alterations of TP73 and FOSB were induced in the BRCA cells for functional rescue assays. RESULTS: According to bioinformatics analyses, UBE3C expression was linked to radioresistance in BRCA. UBE3C knockdown in radioresistant BRCA cells reduced while its overexpression in parental BRCA cells increased the radioresistance of cells in vitro and in vivo. UBE3C, which induced ubiquitination-dependent protein degradation of TP73, was transcriptionally activated by FOSB. The radioresistance of cancer cells was blocked by TP73 overexpression or FOSB knockdown. Additionally, LINC00963 was found to be responsible for the recruitment of FOSB to the UBE3C promoter for transcription activation. CONCLUSION: This work demonstrates that LINC00963 induces nuclear translocation of FOSB and the consequent transcription activation of UBE3C, which enhances radioresistance of BRCA cells by inducing ubiquitination-dependent protein degradation of TP73.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-fos , ARN Largo no Codificante , Tolerancia a Radiación , Ubiquitina-Proteína Ligasas , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Neoplasias/genética , Neoplasias/radioterapia , Proteolisis , Proteínas Proto-Oncogénicas c-fos/genética , Activación Transcripcional/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , ARN Largo no Codificante/genética
14.
J Biol Chem ; 299(8): 104803, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172723

RESUMEN

Interleukin-1ß is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1ß-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1ß-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1ß signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1ß receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1ß signaling to augment the proinflammatory response in beta cells.


Asunto(s)
Proteínas de Ciclo Celular , Interleucina-1beta , Transducción de Señal , Animales , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Inhibidores Enzimáticos/farmacología , Apoptosis/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Activación Transcripcional/genética
15.
Proc Natl Acad Sci U S A ; 120(22): e2300282120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216560

RESUMEN

In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory cis-element DNA and a cryo-EM structure of GlnR-TAC which comprises Mycobacterium tuberculosis RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved ß flap, σAR4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.


Asunto(s)
Actinobacteria , Actinobacteria/genética , Actinobacteria/metabolismo , Activación Transcripcional/genética , Proteínas Bacterianas/metabolismo , Transactivadores/metabolismo , Regiones Promotoras Genéticas/genética , Regulación Bacteriana de la Expresión Génica
16.
Theranostics ; 13(8): 2552-2561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215565

RESUMEN

Rationale: MicroRNAs (miRNAs) play key roles in multiple biological processes, many of which exhibit distinct cell type-specific expression patterns. A miRNA-inducible expression system can be adapted as a signal-on reporter for detecting miRNA activity or as a cell type-specific gene activation tool. However, due to the inhibitory properties of miRNAs on gene expression, few miRNA-inducible expression systems are available, and the available systems are only transcriptional or post-transcriptional regulatory system with obvious leaky expression. Methods: To address this limitation, a miRNA-inducible expression system that can tightly control target gene expression is desirable. Here, by taking advantage of an enhanced LacI repression system and the translational repressor L7Ae, a miRNA-inducible dual transcriptional-translational switch system was designed called the miR-ON-D system. Luciferase activity assay, western blotting, CCK-8 assay and flow cytometry analysis were performed to characterize and validate this system. Results: The results demonstrated that leakage expression was strongly suppressed in the miR-ON-D system. It was also validated that the miR-ON-D system could be used to detect exogenous and endogenous miRNAs in mammalian cells. Moreover, it was shown that the miR-ON-D system could be triggered by cell type-specific miRNAs to regulate the expression of biologically relevant proteins (e.g., p21 and Bax) to achieve cell type-specific reprogramming. Conclusion: This study established a tight miRNA-inducible expression switch system for miRNA detection and cell type-specific gene activation.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Activación Transcripcional/genética , Regulación de la Expresión Génica , Línea Celular Tumoral , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismo
17.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211903

RESUMEN

The tumor suppressor p53 (also known as TP53) plays a central role in cellular stress responses by regulating transcription of multiple target genes. The temporal dynamics of p53 are thought to be important for its function; these encode input information and are decoded to induce distinct cellular phenotypes. However, it remains unclear to what extent the temporal dynamics of p53 reflect the activity of p53-induced gene expression. In this study, we report a multiplexed reporter system that allows us to visualize the transcriptional activity of p53 at the single-cell level. Our reporter system features simple and sensitive observation of the transcriptional activity of endogenous p53 to the response elements of various target genes. Using this system, we show that the transcriptional activation of p53 exhibits strong cell-to-cell heterogeneity. The transcriptional activation of p53 after etoposide treatment is highly dependent on the cell cycle but this is not seen after UV exposure. Finally, we show that our reporter system allows simultaneous visualization of the transcriptional activity of p53 and cell cycle. Our reporter system can thus be a useful tool for studying biological processes involving the p53 signaling pathway.


Asunto(s)
Fluorescencia , Transcripción Genética , Proteína p53 Supresora de Tumor , Ciclo Celular , Genes Reporteros , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
ACS Synth Biol ; 12(4): 1046-1057, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37014634

RESUMEN

Metabolic engineering approaches do not exclusively require fine-tuning of heterologous genes but oftentimes also modulation or even induction of host gene expression, e.g., in order to rewire metabolic fluxes. Here, we introduce the programmable red light switch PhiReX 2.0, which can rewire metabolic fluxes by targeting endogenous promoter sequences through single-guide RNAs (sgRNAs) and activate gene expression in Saccharomyces cerevisiae upon red light stimulation. The split transcription factor is built from the plant-derived optical dimer PhyB and PIF3, which is fused to a DNA-binding domain based on the catalytically dead Cas9 protein (dCas9) and a transactivation domain. This design combines at least two major advantages: first, the sgRNAs, guiding dCas9 to the promoter of interest, can be exchanged in an efficient and straightforward Golden Gate-based cloning approach, which allows for rational or randomized combination of up to four sgRNAs in a single expression array. Second, target gene expression can be rapidly upregulated by short red light pulses in a light dose-dependent manner and returned to the native expression level by applying far-red light without interfering with the cell culture. Using the native yeast gene CYC1 as an example, we demonstrated that PhiReX 2.0 can upregulate CYC1 gene expression by up to 6-fold in a light intensity-dependent and reversible manner using a single sgRNA.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , ARN Guía de Sistemas CRISPR-Cas
19.
Exp Cell Res ; 427(1): 113583, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004946

RESUMEN

Warburg effect is associated with the progression of various tumors, leading to the development of drugs targeting the phenomenon. PFKFB3 is an isoform of 6-phosphofructo-2-kinase (PFK2) that modulates the Warburg effect and has been implicated in most common types of cancer, including non-small cell lung cancer (NSCLC). However, the mechanisms underlying the upstream regulation of PFKFB3 in NSCLC remain poorly understood. This study reported that the transcription factor HOXD9 is upregulated in NSCLC patient samples relative to adjacent normal tissue. Elevated HOXD9 levels are primarily associated with poor prognosis in patients with NSCLC. Functionally, HOXD9 knockdown impaired the metastatic capacity of NSCLC cells, whereas its over-expression accelerated the metastasis and invasion of NSCLC cells in an orthotopic tumor mouse model. In addition, HOXD9 promoted metastasis by increasing cellular glycolysis. Further mechanistic studies revealed that HOXD9 directly binds to the promoter region of PFKFB3 to enhance its transcription. The recovery assay confirmed that the capability of HOXD9 to promote NSCLC cells metastasis was significantly weakened upon PFKFB3 inhibition. These data suggest that HOXD9 may exert as a novel biomarker in NSCLC, indicating that blocking the HOXD9/PFKFB3 axis may be a potential therapeutic strategy for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Activación Transcripcional/genética , Línea Celular Tumoral , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Proliferación Celular , Glucólisis/genética
20.
Cells ; 12(6)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36980279

RESUMEN

Nrf2 is the dominant cellular stress response factor that protects cells through transcriptional responses to xenobiotic and oxidative stimuli. Nrf2 malfunction is highly correlated with many human diseases, but the underlying molecular mechanisms remain to be fully uncovered. GATA4 is a conserved GATA family transcription factor that is essential for cardiac and dorsal epidermal development. Here, we describe a novel interaction between Drosophila Nrf2 and GATA4 proteins, i.e., cap'n'collar C (CncC) and Pannier (Pnr), respectively. Using the bimolecular fluorescence complementation (BiFC) assay-a unique imaging tool for probing protein complexes in living cells-we detected CncC-Pnr complexes in the nuclei of Drosophila embryonic and salivary gland cells. Visualization of CncC-Pnr BiFC signals on the polytene chromosome revealed that CncC and Pnr tend to form complexes in euchromatic regions, with a preference for loci that are not highly occupied by CncC or Pnr alone. Most genes within these loci are activated by the CncC-Pnr BiFC, but not by individually expressed CncC or Pnr fusion proteins, indicating a novel mechanism whereby CncC and Pnr interact at specific genomic loci and coactivate genes at these loci. Finally, CncC-induced early lethality can be rescued by Pnr depletion, suggesting that CncC and Pnr function in the same genetic pathway during the early development of Drosophila. Taken together, these results elucidate a novel crosstalk between the Nrf2 xenobiotic/oxidative response factor and GATA factors in the transcriptional regulation of development. This study also demonstrates that the polytene chromosome BiFC assay is a valuable tool for mapping genes that are targeted by specific transcription factor complexes.


Asunto(s)
Proteínas de Drosophila , Drosophila , Factor de Transcripción GATA4 , Factor 2 Relacionado con NF-E2 , Activación Transcripcional , Animales , Cromatina/genética , Cromatina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Cromosomas Politénicos/metabolismo , Xenobióticos/metabolismo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...